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12MWh/yr per U.S. resident

Where will it come from?
coal?
how?

vs.



Literature - focus on worst condition
Several studies published by Alstom (Bordenet)
maybe Ni-base alloys Austenitics

Fe-Cr

(courtesy Alstom)
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Germany: 30MW oxy-fired pilot plant (Alstom)
FutureGen 2.0:  first major U.S. demonstration



Current Tasks & Timeline
1. Steam/gas corrosion (no ash)
2. Fireside corrosion (with ash)
3. Environment-mechanical property effect

- effect of steam on creep
4. Coatings (effect on mechanical properties)

- lower cost fireside coatings
- TTU subcontract (fabrication and model)

5. Management

A. ~600°C ferritic/martensitic steels (FY10-11)
B. ~650°-700°C austenitic steels
C.~700°-750+°C Ni-base alloys

- creep testing at 800°C (FY11)



Whatʼs different here?
Many previous & current studies of oxy-firing & CO2

- “Oxy” worse: Speigel (2006) + Corvino (2008)
- Complicated: boiler OEMs have advantage
- CO2 effect:  Jülich, U. Pitt & Australia (Young)

Issues with fireside corrosion experiments:
Different experimental conditions (if published)

1000h vs. 10 x 100h (ash re-supply)
Ash/gas/temp. variables
Use of Pt catalyst (SO2/SO3)

* Evaluate experimental parameters
Typically, only commercial alloys evaluated

Prior work showing Cu-containing alloy attacked
Was it an effect of Cu or other element(s)?

* Model alloys to better understand composition



Not just commercial alloys
Model alloys: better composition understanding

Ni Content (wt.%)
0 10 15 20 25 30 35 45

15 X
16 N O N O O O O
18 N O N O O O O  (2001 set)
20 X N O N O O O O
25 (347mods.) X X X
30 N (overlay coatings)
35 (new) X X X
40 N Alloy 33

622,625

chromizing
Cast 400g, hot-roll to 8mm: cut coupons & rods



Corrosion testing w/o ash
Determine effect of higher CO2,

Continuing to establish methodology + procedure
H2O-SO2 gases corrode the endcaps!

gas only, no ash
- H2O only
- Ar-50%CO2*
- H2O-50%CO2*
(*CO2+1500ppmO2)

Synthetic ash: 30%Fe2O3-30%Al2O3-
30%SiO2-5%Na2SO4-5%K2SO4

Gas: N2-CO2-H2O-O2-SO2
Temperature:  600°C
Time:  500h (1 cycle) Porous alumina

17bar or 1bar



Summary: Gas only exposure
1. 550°C steam 17bar:  completed 5kh

bring 600°-800°C data set back to “now”
2. 600°C: completed 2kh each

a. steam 1 bar
b. Ar-50%CO2-0.15O2

- 1500ppmO2 as buffer
c. 50%CO2-0.15O2-50%H2O

3. 600°C: coupons in “ash” furnaces w/SO2

4. 800°C steam 17bar:  USC follow on
5. 650°C  (starting now, focus austenitics)

- 3 gases to repeat 600°C



~12%Cr needed at 550°C
For protective behavior at 17bar steam

Surprisingly, little difference in 2.25-11%Cr steels
5,000h cross-sections in progress

10µm410SS

Cu plate

2,000 h 550°C

Gr.92Gr.22

dual oxide layer
10µm



600°C: H2O worse than CO2
Current Quadakkers (Jülich) work (no O buffer)

- concluded that H2O worse than CO2

Hypothesis: S and/or H2O hides ΔCO2 effect
600°C: commercial Fe-Cr (thick oxide in steam)

model Fe-Cr (20%Cr bad in CO2-H2O)
model Fe-Cr-Ni (20Cr-20Ni attacked)

Model Fe-Cr

Model Fe-Cr-Ni



800°C steam follow up work
Alloy 282: 5kh in 17bar steam or lab. air

282 - steam

282 - air
(1.5Al-2.2Ti)

5µm

Cr2O3
Al2O3TiO2

Ni~20Cr
Al+Ti->γʼ

Synergy
Al-Ti ?

Model alloys:  Ni-22Cr + Al +/- Ti in steam



New coal ash tests:  H2O added
Air- and Oxy-firing conditions:  600°C, 500h

Modified gas train to add H2O to test
Mass gain:  not a strong effect of H2O

Change to oxy-firing had strongest effect on high Cr

air O2
CO2 16 61%
H2O 10 32%
O2 2 2%

SO2 0.15 0.45%

20µm 10µm



Oxy-firing is more complicated
Bordenet (Alstom) presented worst case

- hot flue gas recycle with no cleaning
(unlikely, flue gas cools oxy-fired boiler)

- options: cooling flue gas + de-sulfurization

air-fire O2-fire (w/FGD)
(hot) (warm) (cool)

CO2 15 61% 61% 83%
H2O 10 30% 30% 10%
O2 2 2% 2% 2%

SO2 0.15 0.45% 0.15% 0.45%



Third series: varied SO2 and H2O
Air- and Oxy-firing conditions:  600°C, 500h

2-9Cr:  all heavy attack, difficult to quantify
Higher Cr alloys:  “oxy” was worst (high SO2/H2O)
740 (Ni-23Cr):  all oxy (high CO2) were higher



Nominal composition wt.%
Fe Ni Cr other

309L 60 14 23 1Mn, 1Si
8020 80 20
33 33 31 33 2Mo,1Cu
52 9 63 29
72 57 43 0.3Ti

C22 3 58 23 13Mo,3W

Evaluated weld-overlay coupons
Air- and Oxy-firing conditions:  600°C, 500h

Rectangular coupons:  removed overlay from tube
~1mm thick
- face adjacent to substrate has some dilution
- mass change data meaningless

from TiNova

100µm

309L overlay

Cu plate

outer surface

inner: diluted



Box plots to quantify attack
Air- and Oxy-firing conditions:  600°C, 500h

40 data points taken from 500X pictures
including scale + internal oxidation
high Ni coating more oxidation resistant
attack not increased in oxy-firing conditions

median

75%

max.

min.

25%

(no ash) (no ash)

50µm



Box plots for effect of chemistry
Oxy-firing + ash condition:  600°C, 500h

Commercial coatings:
Cr content not predictive
Average:

increases with Ni
decreases with Fe

Cr/Ni synergy not clear



Ash experiment issues
Three series of experiments completed:

- ΔCO2:  initial runs without H2O
- air/oxy:  worst case comparison with H2O
- “milder” oxy-firing:  lower H2O or SO2

Test protocols to be evaluated:
- use of Pt catalyst (no catalyst running now)
- crucible (covered sample) vs. ash slurry
- cycle frequency 10 x 100h vs. 500h x ?
- goal: “actual” rate or accelerated?

Metal loss measurement
- loss in rod diameter: significant scatter
- box plots capture variable attack

Ash composition:  how changed by oxy-firing?



Task 3: effect of steam on creep?
Little experience with new alloys in steam

In H2O, any effect of  H injected into metal? 
Better comparison: coating debit vs. corrosion debit

ex-situ (in air) in-situ
Creep testing:

as-received
after 800°C steam
after 800°C anneal

10µm

cast 740, 5kh, 800°C

Cu plate



Ex-situ testing:  anneal vs. steam
2kh anneal to account for thermal effect

230:  no effect of 2kh in steam at 800°C
740/617: decrease life after 2kh steam

larger decrease with 800°C 2kh anneal (?)



230: no effect of 2kh in steam
In-situ creep rupture life similar to life in air

similar ductility
thinner scale - due to strain?

Ex-situ vs. in-situ testing:  230
Creep testing in steam at 800°C

10µm

2kh steam

steam rig

Cu plate



Mechanical testing summary
Ex-situ: Ni-base alloys 230, 740, 617, 718

800°C 2 &4 kh steam and anneal
completing matrix in FY11

In-situ: First rig operational (2nd in progress)
No LVDT in alumina tube
Data:  rupture time/mode, no long time
Characterize reaction product

Initial work on Ni-base alloys (high interest)
Next move to Fe-base 9-12%Cr



Coating results at 600°C
Low Al content chemical vapor deposition coating

Conclusions:
Coating prevents thick oxide formation in steam
Coating less effective on low Cr substrates
CO2-H2O is most aggressive environment



Summary
Four tasks: gas only, with ash, creep, coatings
Completed gas only baseline:  550° & 600°C

CO2+H2O most severe - similar to others
Coal ash corrosion:  600°C 500h exposures

exploring test parameters
evaluation of oxy-firing scenarios
box plots for quantifying metal attack
overlay coating specimens:  oxy not worse

Creep:  ex-situ completing, in-situ beginning
Ni-base:  perhaps limited effect of steam

Coatings - model alloys may suggest overlays




